两个复数商的模及辐角与被除数和除数的模和辐角关系

问题描述:

两个复数商的模及辐角与被除数和除数的模和辐角关系

(a+bi)/(c+di)=(a+bi)(c-di)/[(c+di)(c-di)]
=[(ac+bd)+(bc-ad)i]/(c^2-d^2i^2)
=[(ac+bd)+(bc-ad)i]/(c^2+d^2)
把(ac+bd)看成A向量乘以B向量,c^2+d^2看成B向量的模
(ac+bd)/(c^2+d^2)=1 就是 A*B/(B模)
但A模我也不会。。。。(bc-ad)/(c^2+d^2)=√3不会用。。。。。不过应该是结合平面向量的A*B/(A模*B模)=COS∠AOB

设复数z1=r1(cosa+isina),z2=r1(cosb+isinb)(|z1|=r1,|z2|=r2,z1辐角为a,z2辐角为b),
则z1/z2=r1(cosa+isina)/[r1(cosb+isinb)]=(r1/r2)(cosa+isina)/(cosb+isinb)
=(r1/r2)(cosa+isina)(cosb-isinb)/[(cosb+isinb)(cosb-isinb)]
=(r1/r2)[(cosacosb+sinasinb)+(sinacosb-cosasinb)i]/[(cosb)^2+(sinb)^2]
=(r1/r2)[cos(a-b)+isin(a-b)],z1/z2的辐角为a-b,
|z1/z2|=|(r1/r2)[cos(a-b)+isin(a-b)]|=|r1/r2|√{[cos(a-b)]^2+[sin(a-b)]^2},
=|r1/r2|=|z1|/|z2|,
两个复数商的模=模的商,两个复数商辐角=被除数的辐角-除数的辐角