设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a(2)求实数a的取值范围,使得对任意的x属于(0,3e],恒有f(x)小于等于4e^2成立
问题描述:
设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a
(2)求实数a的取值范围,使得对任意的x属于(0,3e],恒有f(x)小于等于4e^2成立
答