求证A是n阶正定矩阵,则存在 唯一的正定矩阵B,使A=B^2 我会存在性,这里求证唯一性

问题描述:

求证A是n阶正定矩阵,则存在 唯一的正定矩阵B,使A=B^2 我会存在性,这里求证唯一性

如果存在另外的正定矩阵C,满足A=C^2,下面证明B=C.B和C都是正定矩阵,所以都可以完美对角化,都有对应特征值和特征向量.因为B^2=A,所以B特征值的平方对应A的特征值,相应的特征向量对应A的相应特征向量.因为C^2=A,所以C...