先化简,再求值:(a−1a2−4a+4−a+2a2−2a)÷(4a−1),其中a=2-3.
问题描述:
先化简,再求值:(
−a−1
a2−4a+4
)÷(a+2
a2−2a
−1),其中a=2-4 a
.
3
答
原式=[
−a−1 (a−2)2
]÷a+2 a(a−2)
4−a a
=
•a(a−1)−(a−2)(a+2) a(a−2)2
a 4−a
=
•4−a a(a−2)2
a 4−a
=
.1 (a−2)2
当a=2−
时,原式=
3
.1 3
答案解析:首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.
考试点:分式的化简求值.
知识点:本题主要考查分式的化简求值,注意除法要统一为乘法运算;以及符号的处理等.