数列求和常用公式证明数列求和常用公式:1)1+2+3+.+n=n(n+1)÷22)1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)÷63) 1^3+2^3+3^3+.+n^3=( 1+2+3+.+n)^2 =n^2*(n+1)^2÷44) 1*2+2*3+3*4+.+n(n+1) =n(n+1)(n+2)÷35) 1*2*3+2*3*4+3*4*5+.+n(n+1)(n+2) =n(n+1)(n+2)(n+3)÷46) 1+3+6+10+15+. =1+(1+2)+(1+2+3)+(1+2+3+4)+.+(1+2+3+...+n) =[1*2+2*3+3*4+.+n(n+1)]/2=n(n+1)(n+2) ÷67)1+2+4+7+11+. =1+(1+1)+(1+1+2)+(1+1+2+3)+.+(1+1+2+3+...+n) =(n+1)*1+[1*2+2*3+3*4+.+n(n+1)]/2 =(n+1)+n(n+1)(n+2) ÷68)1/2+1/

问题描述:

数列求和常用公式证明
数列求和常用公式:
1)1+2+3+.+n=n(n+1)÷2
2)1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)÷6
3) 1^3+2^3+3^3+.+n^3=( 1+2+3+.+n)^2
=n^2*(n+1)^2÷4
4) 1*2+2*3+3*4+.+n(n+1)
=n(n+1)(n+2)÷3
5) 1*2*3+2*3*4+3*4*5+.+n(n+1)(n+2)
=n(n+1)(n+2)(n+3)÷4
6) 1+3+6+10+15+.
=1+(1+2)+(1+2+3)+(1+2+3+4)+.+(1+2+3+...+n)
=[1*2+2*3+3*4+.+n(n+1)]/2=n(n+1)(n+2) ÷6
7)1+2+4+7+11+.
=1+(1+1)+(1+1+2)+(1+1+2+3)+.+(1+1+2+3+...+n)
=(n+1)*1+[1*2+2*3+3*4+.+n(n+1)]/2
=(n+1)+n(n+1)(n+2) ÷6
8)1/2+1/2*3+1/3*4+.+1/n(n+1)
=1-1/(n+1)=n÷(n+1)
9)1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/1+2+3+...+n)
=2/2*3+2/3*4+2/4*5+.+2/n(n+1)
=(n-1) ÷(n+1)
10)1/1*2+2/2*3+3/2*3*4+.+(n-1)/2*3*4*...*n
=(2*3*4*...*n- 1)/2*3*4*...*n
11)1^2+3^2+5^2+.(2n-1)^2=n(4n^2-1) ÷3
12)1^3+3^3+5^3+.(2n-1)^3=n^2(2n^2-1)
13)1^4+2^4+3^4+.+n^4
=n(n+1)(2n+1)(3n^2+3n-1) ÷30
14)1^5+2^5+3^5+.+n^5
=n^2 (n+1)^2 (2n^2+2n-1) ÷ 12
15)1+2+2^2+2^3+.+2^n=2^(n+1) – 1

统一把他们的和记为Sn1)Sn=1+2+3+.+n =n+(n-1)+(n-2)+...+1上下两个配对,为n个n+1,相加得 2Sn=n(n+1)所以Sn=n(n+1)/22)n^2=n(n+1)-n1^2+2^2+3^2+.+n^2=1*2-1+2*3-2+.+n(n+1)-n=1*2+2*3+...+n(n+1)-(1+2+.....