设O为三角形ABC中任意一点,D、E、F分别为各边中点,试证OA+OB+OC=OD+OE+OF(都为向量)
问题描述:
设O为三角形ABC中任意一点,D、E、F分别为各边中点,试证OA+OB+OC=OD+OE+OF(都为向量)
答
由题可知:
OA=OD+DA
OB=OE+EB
OC=OF+FC
又
DA=1/2BA
EB=1/2CB
FC=1/2CA
可知:DA+EB+FC=1/2BA+1/2CB+1/2CA=0
故
OA+OB+OC=OD+OE+OF(都是向量)