直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,E为BB1的中点,点D在AB上,且DE=根号3.求证CD垂直于平面A1ABB1
问题描述:
直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,E为BB1的中点,点D在AB上,且DE=根号3.求证CD垂直于平面A1ABB1
答
很高兴为您
∵ABC-A1B1C1为直三棱柱
∴BB1‖AA1且BB1=AA1=2
∴BE=BB1/2=1
∴BD=√(DE^2-BE^2)=√2
又∵AC=BC=2,ACB=90°
∴AB=√(AC^2+BC^2)=2√2
∴D为AB的中点
∴CD⊥AB;
∵ABC-A1B1C1为直三棱柱
∴CC1‖面A1ABB1,CC1⊥面ABC
∴CD⊥CC1
∴面CDC1⊥面A1ABB1
又∵CD⊥AB
∴CD⊥面A1ABB1;