在等腰直角三角形ABC中,∠ABC=90°,D为AC边的中点过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长连接BD,∵等腰直角三角形ABC中,D为AC边上中点,∴BD⊥AC,BD=CD=AD,∠ABD=45°,∴∠C=45°,又DE丄DF,∴∠FDC=∠EDB,∴△EDB≌△FDC,∴BE=FC=3,∴AB=7,则BC=7,∴BF=4,在直角三角形EBF中,EF^2=BE^2+BF^2=3^2+4^2,∴EF=5.答:EF的长为5.这里为什么BD=CD=AD

问题描述:

在等腰直角三角形ABC中,∠ABC=90°,D为AC边的中点过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长
连接BD,
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC,BD=CD=AD,∠ABD=45°,
∴∠C=45°,
又DE丄DF,
∴∠FDC=∠EDB,
∴△EDB≌△FDC,
∴BE=FC=3,
∴AB=7,则BC=7,
∴BF=4,
在直角三角形EBF中,
EF^2=BE^2+BF^2=3^2+4^2,
∴EF=5.
答:EF的长为5.
这里为什么BD=CD=AD

因为“直角三角形斜边上的中线等于斜边的一半”
AC是直角三角形ABC的斜边,D为AC边上中点即BD是斜边上的中线。
因此,BD=CD=AD

连接BD,∵等腰直角三角形ABC中,D为AC边上中点,∴BD⊥AC,BD=CD=AD,∠ABD=45°,∴∠C=45°,又DE丄DF,∴∠FDC=∠EDB,∴△EDB≌△FDC,∴BE=FC=3,∴AB=7,则BC=7,∴BF=4,在直角三角形EBF中,EF^2=BE^2+BF^2=3^2+4^2,∴EF=5...