设a1,a2,a3,b1,b2均为4*1列向量,且4阶行列式a1,a2,a3,b1=m,a1,a2,b2,a3=n,则行列式a3,a2,a1,b1+b2=
问题描述:
设a1,a2,a3,b1,b2均为4*1列向量,且4阶行列式a1,a2,a3,b1=m,a1,a2,b2,a3=n,则行列式a3,a2,a1,b1+b2=
答
已知| a1 a2 a3 b1 | =m,| a1 a2 b2 a3| = n
交换行列式的两列,行列式变号
所以 | a3 a2 a1 b1 | = -m
| a3 a2 b2 a1| = -n
| a3 a2 a1 b2| =n
|a3,a2,a1,b1+b2| =| a1 a2 a3 b1 | + | a3 a2 a1 b2| =n-m