设a>0,函数f(x)=0.5x^2-(a+1)x+alnx,(1)若函数y=f(x)在(2,f(2))处切线斜率为-1,求a值(2)求函数的极值昆八中的高二数学月考卷六

问题描述:

设a>0,函数f(x)=0.5x^2-(a+1)x+alnx,(1)若函数y=f(x)在(2,f(2))处切线斜率为-1,求a值(2)求函数的极值
昆八中的高二数学月考卷六

(1) f'(x)=x-(a+1)+a/x=(x-a)(x-1)/x
已知f'(2)=-1
即2-(a+1)+a/2=-1
4-2a-2+a=-2
a=4
(2) 设f'(x)=0
则(x-a)(x-1)=0
x=1或a
故函数的极值为
f(1)=0.5-a-1=-a-0.5
f(a)=alna-0.5a^2-a
[1] 0[2] a≥时,f(a)为极小值,f(1)为极大值

f(x) = 0.5x² - (a + 1)x + alnx
f'(x) = x - (a + 1) + a / x
由于在(2,f(2))处的切线为-1
f'(x) = 0
f'(2) = 0
2 - (a + 1) + a / 2 = 0
解得:a = 4
f(x) = 0.5x² -5x + 4lnx
f'(x) = x - 5 + 4 / x
令f'(x) = 0
x - 5 + 4 / x = 0
x = 1 or x = 4
f''(x) = 1 - 4 / x²
f''(1) = -3 f''(4) = 3 / 4 > 0,∴最小值为f(4) = 8ln2 - 12