y=∫(sint)^3dt,下限0,上限根号x,求dy/dx

问题描述:

y=∫(sint)^3dt,下限0,上限根号x,求dy/dx

∵y=∫(sint)^3dt
∴dy/dx=d(∫(sint)^3dt)/dx
=(sin(√x))^3*d(√x)/dx
=(sin(√x))^3*(1/(2√x))
=(sin(√x))^3/(2√x).