观察下列各式:√1+1/3=2√1/3,√2+1/4=3√1/4,√3+1/5=4√1/5···.用发现的规律用含n的式子表示

问题描述:

观察下列各式:√1+1/3=2√1/3,√2+1/4=3√1/4,√3+1/5=4√1/5···.用发现的规律用含n的式子表示

√(1+1/3)=2√(1/3),√(2+1/4)=3√(1/4),√(3+1/5)=4√(1/5)···。

√[n+1/(n+2)]

=√[n(n+2)/(n+2)+1/(n+2)]

=√[(n^2+2n+1)/(n+2)]

=√[(n+1)^2/(n+2)]

=(n+1)√[1/(n+2)]








.

√﹙n-1﹚ + 1/﹙n+1﹚= n√1/﹙n+1﹚

√n+1/(n+2)=(n+1)√1/(n+2)

√[n+1/(n+2)]=(n+1)√(1/n+2)
【希望可以帮到你!祝学习快乐!】

√n+1/(n+2)=(n+1)√1/(n+2)

√[n+1/﹙n+2﹚]=n√[1/﹙n+2﹚].