1/1x3+1/3x5+1/5x7+.+1/1997x1999 简便计算.
问题描述:
1/1x3+1/3x5+1/5x7+.+1/1997x1999 简便计算.
答
1/2(1-1/1999)
答
0.5x(1-1/3+1/3-1/5+......1/1997-1/1999)
答
1/1x3+1/3x5+1/5x7+.+1/1997x1999
=(1/2)*(1-1/3+1/3-1/5+1/5-1/7+.+1/1997-1/1999)
=(1/2)*(1-1/1999)
=999/1999
答
你好
1/1*3=1/2 * (1-1/3)
1/3*5=1/2 * (1/3-1/5)
所以原式=1/2[(1-1/3)+(1/3-1/5)+……+(1/1997-1/1999)]
=1/2(1-1/1999)
=1/2 * 1998/1999
=999/1999