计算:1/1x3+1/3x5+1/5x7+.+1/31x33+1/33x35,

问题描述:

计算:1/1x3+1/3x5+1/5x7+.+1/31x33+1/33x35,

因为 an=1/[(2n-1)*(2n+1)] = 1/2 [1/(2n-1) - 1/(2n+1)]所以,1/1x3+1/3x5+1/5x7+.+1/31x33+1/33x35= 1/2*[(1/1 - 1/3) + (1/3 - 1/5) + (1/5 - 1/7) + …… + (1/33 - 1/35)]= 1/2*(1/1 - 1/35)=1/2* 34/35=17/35...可以简便些吗,讲解因为 1/1 - 1/3 = 3/3 - 1/3 = 2/3 = 2×1/3所以,1/(1×3) = 1/2 × (1/1 - 1/3)同理,1/3 - 1/5 = 5/15 - 3/15 = 2/15 = 2 × 1/15所以,1/(3×5) = 1/2×(1/3 - 1/5)…………1/(33×35) = 1/2×(1/33 - 1/35)代到公式中,你会发现放多分数都会正、负抵消,只剩下 1 和 -1/35所以得到最终结果。