设正实数a、b、c使绝对值a-ab+根号下3b-c +(3a-2c)^2=0,求a:b:c的值绝对值a-ab+根号下3b-c +(3a-2c)^2=0,求a:b:c的值
问题描述:
设正实数a、b、c使绝对值a-ab+根号下3b-c +(3a-2c)^2=0,求a:b:c的值
绝对值a-ab+根号下3b-c +(3a-2c)^2=0,求a:b:c的值
答
因为|a-ab|>=0,根号(3b-c)>=0,(3a-2c)^2>=0
而|a-ab|+根号(3b-c)+(3a-2c)^2=0
所以|a-ab|=0,根号(3b-c)=0,(3a-2c)^2=0
解得a=2,b=1,c=3
或者a=0,b=0,c=0(舍去)
所以a:b:c=2:1:3