f(x)=e的x次方除以a+a除以e的x次方在R上为偶函数 1.求a 2.证明f(x)在(o,正无穷)上为增函数

问题描述:

f(x)=e的x次方除以a+a除以e的x次方在R上为偶函数 1.求a 2.证明f(x)在(o,正无穷)上为增函数

f(x)=e^x/a+a/ e^x在R上为偶函数
f(x)= f(-x) e^x/a+a/ e^x= e^-x/a+a/ e^-x
e^x/a+a/ e^x=1/a*e^x +a*e^x
(1/a-a) *e^x=(1/a-a) *e^-x
当1/a-a不等于0,则不成立上式 故1/a-a=0 a^2=1 a=1或-1
证明:当a=1时f(x)= e^x+1/e^x f(x+1)= e^[x+1]+1/e^[x+1]
f(x+1)-f(x)= e^[x+1]+1/e^[x+1]- e^x-1/e^x
=(e-1) e^x+[(1-e)/e] e^[-x]= [(e-1) e^[2x+1]+(1-e) ]/e^[x+1]
=(e-1) [e^[2x+1]-1]/ e^[x+1]
因x>0,所以e-1>0 ,e^[x+1]>0,[e^[2x+1]-1]>0
所以f(x+1)-f(x)>0 得f(x+1)> f(x)所以得证
当为-1时依旧成立同理可得