(1)已知-1

问题描述:

(1)已知-1


(1)
f(x)=3+2×3^(x+1)-9^x
=-(3^x)²+6×3^x+3
=-(3^x)²+6×3^x-9+12
=-(3^x-3)²+12
-1≤x≤2
当3^x=3时,即当x=1时,f(x)有最大值f(x)max=12
当3^x=1/3时,即当x=-1时,f(x)有最小值f(x)min=44/5
(2)
f(x)=a^(2x)+2a^x-1
=(a^x)²+2a^x+1-2
=(a^x+1)²-2
0当a^x=1/a时,即当x=-1时,f(x)有最大值 (1+2a-a²)/a²
(1+2a-a²)/a²=14
整理,得
15a²-2a-1=0
(3a-1)(5a+1)=0
a=1/3或a=-1/5(a>1时,1/a≤x≤a
当a^x=a时,即当x=1时,f(x)有最大值a²+2a-1
a²+2a-1=14
a²+2a-15=0
(a+5)(a-3)=0
a=3或a=-5(综上,得a=3或a=1/3

令 a^x = t ,
当a>1时,t的范围在(1/a,a).f(t)=t^2+2t-1.当t=a时,f(t)取得最大值14.可解得a=3
当0