已知|向量a=3|,|向量b|=4,向量a与向量b的夹角为60°(1)求向量a*向量b与(向量a+向量b)*(向量a-2向量b) (2)求向量b在向量a的方向上的投影 )

问题描述:

已知|向量a=3|,|向量b|=4,向量a与向量b的夹角为60°(1)求向量a*向量b与(向量a+向量b)*(向量a-2向量b) (2)求向量b在向量a的方向上的投影 )

cjy4808 对了

|向量a|=3,|向量b|=4.(向量a,向量b)=60°,
a·b=|a||b|cos60=3*4*1/2=6
(向量a+2向量b)*(向量a-3向量b)
=a^2-3a·b+2a·b-6b^2
=a^2-a·b-6b^2
=9-6-6*16
=-93
向量b在向量a的方向上的投影 等于|a|×cos60度=3/2

(1)向量a*向量b=|a||b|cos=3*4*(1/2)=6
(向量a+向量b)*(向量a-2向量b)=|a|²-2|b|²-向量a*向量b=3²-2*4²-6=-29
(2)向量b在向量a的方向上的投影=|b|cos=4*(1/2)=2

(1)-29
(2)1.5