将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图(1);再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图2,证明:四边形AEDF是菱形.
问题描述:
将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图(1);再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图2,证明:四边形AEDF是菱形.
答
证明:由第一次折叠可知:AD为∠CAB的平分线,∴∠1=∠2(2分)由第二次折叠可知:∠CAB=∠EDF,∵AE=ED,AF=FD,∴∠1=∠3,∠2=∠4,∵∠1=∠2,∴∠3=∠4(4分),在△AED与△AFD中∠1=∠2AD=AD∠3=∠4∴△AED...
答案解析:第一次折叠,AC落在AB边上,则折痕AD平分∠BAC,∠EAD=∠FAD;
第二次折叠,A、D重合,则∠EAF=∠EDF、∠EDA=∠FDA;AE=ED、AF=FD;
易证得△AED≌△AFD,得AE=AF、DE=DF,再根据第二次折叠所得到的AE=DE、AF=FD,可证得四边形AEDF的四边相等,由此可判定四边形AEDF是菱形.
考试点:菱形的判定;全等三角形的判定与性质;翻折变换(折叠问题).
知识点:此题考查了折叠的性质、全等三角形的判定和性质及菱形的判定方法.