设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,求实数a的取值范围.
问题描述:
设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,求实数a的取值范围.
答
∵p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0,∴p:-1≤4x-3≤1,解得{x|12≤x≤1},q:{x|a≤x≤a+1},∵¬p是¬q的必要而不充分条件,∴¬q⇒¬p,¬p推不出¬q,可得p⇒q,q推不出p,∴a+1≥1a≤12解得0≤a≤12...
答案解析:根据绝对值的性质和十字相乘法分别求出命题p和q,再根据¬p是¬q的必要而不充分条件,可以推出p⇒q,再根据子集的性质进行求解;
考试点:必要条件、充分条件与充要条件的判断;命题的真假判断与应用.
知识点:本题考查充分条件必要条件的定义及绝对值的性质,确定两个条件之间的关系,本题求解中涉及到了一元二次方程有根的条件,及集合间的包含关系,有一定的综合性.