计算:1/2+1/6+1/20+1/30+1/42+1/56+1/72.最好是简便的算法!
问题描述:
计算:1/2+1/6+1/20+1/30+1/42+1/56+1/72.最好是简便的算法!
答
原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)+(1/7-1/8)+(1/8-1/9)=8/9
答
分裂法:
1/2+1/6+1/20+1/30+1/42+1/56+1/72
=1/1×2+1/2×3+1/4×5+1/5×6+1/6×7+1/7×8+1/8×9(分母为1×2,2×3……应该题目中缺少1/12)
=1—1/2+1/2—1/3+(1/3—1/4)+1/4—1/5+1/5—1/6……+1/8—1/9
=1—1/9
=8/9
答
1/2+1/6+1/20+1/30+1/42+1/56+1/72
=1/2+(1/2-1/3)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)+(1/7-1/8)+(1/8-1/9)
=1-1/3+1/4-1/9
=29/36
答
估计你这个漏了一项1/12,考虑分母拆成两个数的乘积,裂项求和
原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+(1/5-1/6)+(1/6-1/7)+(1/7-1/8)+(1/8-1/9)=8/9