平面上有n(n>3=3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能做出多少个不同的三角形?分析:当仅有3个点时,可作()个三角形;当有4个点时,可作()个三角形.推理:.我要求画图.当有5个点时,可作()个三角形;当有6个点时,可作()个三角形
问题描述:
平面上有n(n>3=3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能做出多少个不同的三角形?分析:当仅有3个点时,可作()个三角形;当有4个点时,可作()个三角形.推理:.我要求画图.
当有5个点时,可作()个三角形;当有6个点时,可作()个三角形
答