平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?(题目见下)归纳:3个点可作()个三角形;4个点可作()个三角形;5个点可作()个三角形;N个点可作()个三角形.推理:( )结论:(                   )

问题描述:

平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少个不同的三角形?
(题目见下)
归纳:3个点可作()个三角形;4个点可作()个三角形;5个点可作()个三角形;
N个点可作()个三角形.
推理:( )
结论:(                   )