若两个矩阵的秩相等,那么它们等价吗?是否一个可逆另一个一定也可逆?为什么?

问题描述:

若两个矩阵的秩相等,那么它们等价吗?是否一个可逆另一个一定也可逆?为什么?

等价。
不一定。因为两矩阵的行列式,有可能其中一个为零,另一个不为零

等价,但是前提是他们必须有相同的行数和列数.具体证明我不太确定,但结论是正确的,楼主可以继续钻研,你可以举个例子(1,3,4),(2,3,4)他们的秩相等,显然1,3,4经过几次初等变换就可以变成2.,3,4.所以这两个矩阵是等...