如何证明一个矩阵是可逆的?(多种方法)
问题描述:
如何证明一个矩阵是可逆的?(多种方法)
答
就一个n阶的矩阵 1矩阵的秩小于n,那么这个矩阵不可逆,反之可逆 2矩阵行列式的值为0,那么这个矩阵不可逆,反之可逆 3,对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆 4,对于非齐次线性方程AX=b,若方程只有特解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆 总之可逆就是说矩阵是非退化的,是满秩的,判定有很多种 比较活,掌握概念自己会运用就好了