求解一道高数题 ,求由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积

问题描述:

求解一道高数题 ,求由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积

面积=∫ydx,积分区间对应与0≤t≤2∏时x的范围即x从0到2πa(这个积分区间没用),然后将x=a(t - sint),y=a(1 -cost)代入,面积=∫a(1 -cost)da(t - sint),t的范围从0到2π,展开积分即可,最后结果3πa的平方。

楼上的思路基本正确,积分时要将y,x转换为用t表示的函数.
我补充一下过程吧:
S=∫|y|dx
=∫a(1-cost)dx (∵y=a(1-cost)≥0,其中a>0)
又∵x=a(t-sint)
∴dx=a(1-cost)dt
S=∫(0,2π) a²(1-cost)²dt
=a²∫(0,2π) (1-cost)²dt
=a²∫(0,2π) (1+cos²t-2cost)dt
=a²∫(0,2π) [1+(1+cos2t)/2-2cost]dt
=a²∫(0,2π) (3/2+cos2t/2-2cost)dt
=a²[3t/2+sin2t/4-2sint]|(0,2π)
=3πa²