p是正三角形ABC内一点,PA等于2,PB等于2倍的根号3,PC等于4,求BC的长

问题描述:

p是正三角形ABC内一点,PA等于2,PB等于2倍的根号3,PC等于4,求BC的长

将 三角形BCP绕C点旋转 至BC与AC边重合 记P点新的位置为O 三角形AOP中 A P=2 AO=2根号3 又角PCO=角BCA=60度 CP=CO 故三角形 CPO 为正三角形 所以PO=4 故三角形APO中 角PAO=90度 角APO=60 度 角AOP=30 度 所以角AOC=30+60=90度 故直角三角形AOC中 AC=2倍根号7=BC