证明 (4 14:50:58)证明(1)已知a>b>0,  c<d<0,  e<0,求证e/(a-c)>e/(d-b)(2)若x+y+z=a,求证x2+y2+z2≥  a2/3

问题描述:

证明 (4 14:50:58)
证明(1)已知a>b>0,  c<d<0,  e<0,求证e/(a-c)>e/(d-b)
(2)若x+y+z=a,求证x2+y2+z2≥  a2/3

1.
c<d<0→-c>-d>0,又a>b>0,
两边相加得a-c>b-d>0,
→0<1/(a-c)<1/(b-d),
→1/(a-c)-1/(d-b)<0,又因 e<0
→e/(a-c)-e/(d-b)>0,
→e/(a-c)>e/(d-b).
2.
x^2+y^2+z^2=(x+y+z)^2-2xy-2yz-2xz
=a^2-2xy-2yz-2xz
≥a^2-(x^2+y^2)-(y^2+z^2)-(x^2+z^2)
= a^2-2(x^2+y^2+z^2)
3(x^2+y^2+z^2)≥a^2
x^2+y^2+z^2≥(a^2)/3

(1)是个错题,如3>2>0,-2

1、
由于a>b>0>d>c,所以a-c>0,d-b