求19+199+1999+19999·······+1999···99(2002个9)的简便计算

问题描述:

求19+199+1999+19999·······+1999···99(2002个9)的简便计算

19+199+1999+19999·······+1999···99(2002个9)
=20-1+200-1+2000-1+20000-1+.......+200000(2002个0)-1
=2222222222.....20(2002个2)-2002
=222222......22220-2002
=222222.....20218(前边有1999个2)

各项都先加1 得2222。。。20 2002个2 再减2002

19+199+1999+19999·······+1999···99(2002个9)
=20-1+200-1+2000-1+.+20000..0(2002个0)-1
=2222222.22(2003个2)-2002
=2222.222220220 (共2003位)