简算:1/(1*3)+1/(3*5)+1/(5*7)+……+1/(99*101)=

问题描述:

简算:1/(1*3)+1/(3*5)+1/(5*7)+……+1/(99*101)=

普遍适用的通式可以写成1/[(2k-1)*(2k+1)]=1/2[1/(2k-1)-1/(2k+1)]分别把1,2,3……50代入就得到1/(1*3)=1/2(1/1-1/3)1/(3*5)=1/2(1/3-1/5)……1/(99*101)=1/2(1/99-1/101)在把上面的50个式子相加左边就是你要求的表...