求函数f(x)=cos2x-sinx x属于[-π/4,π/4]的最大值
问题描述:
求函数f(x)=cos2x-sinx x属于[-π/4,π/4]的最大值
答
运用公式cos2x=1-2sinx²
f(x)=1-2sinx²-sinx=1+1/8-2(sinx+1/4)²
x属于[-π/4,π/4],所以sinx属于【-根号2/2,根号2/2】
所以当sinx=0时取最大值。
f(x)max=1
答
f(x)=cos2x-sinx
=1-2sin^2x-sinx
=1-2(sin^2x+1/2sinx+1/16)+1/8
=9/8-2(sinx+1/4)^2
当sinx+1/4=0时,sinx=-1/4>-1/2,则-π/6