已知函数f(x)=3cos^2x+2cosx*sinx+sin^2x (1)求函数的周期(2)写出f(x)的单调区间(3)求f(x)的最大值,病求出此时x的值
问题描述:
已知函数f(x)=3cos^2x+2cosx*sinx+sin^2x
(1)求函数的周期
(2)写出f(x)的单调区间
(3)求f(x)的最大值,病求出此时x的值
答
同上。。。
答
f(x)=3cos^2x+2cosx*sinx+sin^2x
=2cos^2x+sin2x+1
=cos2x+sin2x+2
=√2*sin(2x+π/4)+2
∴T=2π/2=π
2kπ-π/2≤2x+π/4≤2kπ+π/2时,f(x)单调递增 x∈[kπ-3π/8,kπ+π/8]
∴单调增区间为[kπ-3π/8,kπ+π/8]
单调减区间为[kπ+π/8,kπ+5π/8]
2x+π/4=2kπ+π/2
x=kπ+π/8时
f(x)max=2+√2
答
f(x)=3(cosx)^3+2sinxcosx+(sinx)^2
=sin2x+2(cosx)^2+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
(1)最小正周期为T=2π/2=π,周期为kπ,k是不为0的整数.
(2)2kπ-π/2 2kπ+π/2
(3)当2x+π/4=2kπ+π/2,即x=kπ+π/8时,f(x)取得最大值为√2+2.