初一的计算题,要用平方差公式或完全平方公式做求(a+1)(a+3)(a+5)(a+7),要过程!
初一的计算题,要用平方差公式或完全平方公式做
求(a+1)(a+3)(a+5)(a+7),要过程!
解 :
(a+1)(a+3)(a+5)(a+7)
=(a+1)(a+7)(a+3)(a+5)
=(a^2+8a+7)(a^2+8a+15)
=(a^2+8a)^2+22(a^2+8a)+105
=a^4+16a^3+64a^2+22a^2+176a+105
=a^4+16a^3+86a^2+176a+105
(a+1)(a+3)(a+5)(a+7)
=[(a+1)(a+7)][(a+3)(a+5)]
=[a^2+8a+7][a^2+8a+15]
=[a^2+8a+7][a^2+8a+7+8]
=[a^2+8a+7]^2+8[a^2+8a+7]
=………………
展开即可
(a+1)(a+3)(a+5)(a+7)
=(a+4-3)(a+4+3)(a+4-1)(a+4+1)
=[(a+4)^2-9][(a+4)^2-1]
(a+1)(a+3)(a+5)(a+7)
=(a+1)[(a+1)+2][(a+7)-2](a+7)
=[(a+1)^2+2(a+1)][(a+7)^2-2(a+7)]
=[2a^2+6a+4][2a^2+26a+84]
=4[a^2+3a+2][a^2+13+42]
=a^4+16a^3+86a^2+176a+105
设a+4=K,则原式可化为
(K-3)(K-1)(K+1)(K+3)
=(K^2-9)(K^2-1)
=K^4-10K^2+9=(a+4)^4-10(a+4)^2+9
=a^4+16a^3+86a^2+176a+105
解 :
(a+1)(a+3)(a+5)(a+7)
=(a+1)(a+7)(a+3)(a+5)
=(a^2+8a+7)(a^2+8a+15)
=(a^2+8a)^2+22(a^2+8a)+105
=a^4+16a^3+64a^2+22a^2+176a+105
=a^4+16a^3+86a^2+176a+105
供参考!江苏吴云超祝你学习进步
(a+1)(a+3)(a+5)(a+7)
=[(a+1)(a+7)][(a+3)(a+5)]
=(a^2+8a+7)(a^2+8a+15)
=(a^2+8)^2+22(a^2+8a)+105
=a^4+16a^2+64+22a^2+176a+105
=a^4+38a^2+176a+169