12+16+112+120+130+142+156+172.

问题描述:

1
2
+
1
6
+
1
12
+
1
20
+
1
30
+
1
42
+
1
56
+
1
72

1
2
+
1
6
+
1
12
+
1
20
+
1
30
+
1
42
+
1
56
+
1
72

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
+
1
7
-
1
8
+
1
8
-
1
9

=1-
1
9

=
8
9

答案解析:
1
2
=
1
1×2
=1-
1
2
1
6
=
1
2×3
=
1
2
-
1
3
1
12
=
1
3×4
=
1
3
-
1
4
,…
1
72
=
1
8×9
=
1
8
-
1
9
,依次按照
1
n(n−1)
=
1
n
-
1
n−1
展开,前后加减相同分数抵消,即可得解.
考试点:分数的巧算.
知识点:灵活应用分数
1
n(n−1)
=
1
n
-
1
n−1
展开是解决此题的关键.