已知方程x²+(m+9)x+2m+6=0的两根的平方和为24,那么m的值等于
问题描述:
已知方程x²+(m+9)x+2m+6=0的两根的平方和为24,那么m的值等于
答
x1+x2=-(m+9)x1x2=2m+6x1^2+x2^2=24即有(x1+x2)^2-2x1x2=24(m+9)^2-2(2m+6)=24m^2+14m+45=0(m+9)*(m+5)=0m=-9或-5检验,当M=-9时方程是x^2-12=0,符合当m=-5时方程是x^2+4x-4=0,符合故有m=-9或-5....