已知(mx+n)/(x^2-1)+(nx-m)/(x^2-1)=(3x-1)/(x^2-1),求常数m,n的值
问题描述:
已知(mx+n)/(x^2-1)+(nx-m)/(x^2-1)=(3x-1)/(x^2-1),求常数m,n的值
答
(mx+n)/(x^2-1)+(nx-m)/(x^2-1)=(3x-1)/(x^2-1)
mx+n+nx-m=3x-1
(m+n)x-(m-n)=3x-1
m+n=3 m-n=1
m=2,n=1
答
m=2 n=1
在x不等于正负1的情况下,否则没有意义
步骤:
约分,得mx+n+nx-m=3x-1
合并同类项,得 (m+n)x+(n-m)=3x-1
m+n=3
n-m=-1
计算结果就行
答
(mx+n)/(x^2-1)+(nx-m)/(x^2-1)=(3x-1)/(x^2-1),(mx+n+nx-m)/(x²-1)=(3x-1)/(x²-1)[x(m+n)+(n-m)]/(x²-1)=(3x-1)/(x²-1)∴m+n=3n-m=-1∴m=2n=1