化简:(8+2√15-√10-√6)/(√5+√3-√2)

问题描述:

化简:(8+2√15-√10-√6)/(√5+√3-√2)

原式=〔5+2√15+3-(√10+√6)〕/(√5+√3-√2)
=〔(√5+√3)²-√2(√5+√3)〕/(√5+√3-√2)
=(√5+√3-√2)(√5+√3)/(√5+√3-√2)
=(√5+√3)

设 a = √2 ,b = √3 ,c = √58+2√15-√10-√6 = 8 + 2bc - ac - ab= bb + cc + bc + bc - ac - ab (注意8 = √3×√3 + √5×√5) = (bb + bc - ab) + (cc + bc - ac)= b×(c + b - a) + c×(c + b - a)= (b + c...