已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.

问题描述:

已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.

将△APC绕点A顺时针旋转60°得△AQB,则△AQB≌△APC
∴BQ=CP,AQ=AP,
∵∠1+∠3=60°,
∴△APQ是等边三角形,
∴QP=AP,
∴△QBP就是以AP,BP,CP三边为边的三角形,
∵∠APB=113°,
∴∠6=∠APB-∠5=53°,
∵∠AQB=∠APC=123°,
∴∠7=∠AQB-∠4=63°,
∴∠QBP=180°-∠6-∠7=64°,
∴以AP,BP,CP为边的三角形的三内角的度数分别为64°,63°,53°.
答案解析:将△APC绕点A顺时针旋转60°得△AQB,可以证明△APQ是等边三角形则QP=AP,则△QBP就是以AP,BP,CP三边为边的三角形,然后分别求出△QBP的三个内角的度数即可.
考试点:旋转的性质;等边三角形的判定与性质.


知识点:本题主要考查了旋转的性质,用到的知识点是等边三角形的性质和判定,证得△QBP就是以AP,BP,CP三边为边的三角形是解题的关键.