设函数f(x)=cos(2x-π/3)-cos2x,x属于R,求f(x)在(0,π/2)上的值域1) 求f(x)在(0,π/2)上的值域2) 记三角形ABC的内角A,B,C的对边长分部为a,b,c,若f(A)=1,a=根号7,b=3,求c的值
问题描述:
设函数f(x)=cos(2x-π/3)-cos2x,x属于R,求f(x)在(0,π/2)上的值域
1) 求f(x)在(0,π/2)上的值域
2) 记三角形ABC的内角A,B,C的对边长分部为a,b,c,若f(A)=1,a=根号7,b=3,求c的值
答
f(x)=cos(2x-π/3)-cos2x
=cos2xcosπ/3+sin2xsinπ/3-(cosx)^2
=根号3/2sin2x-1/2cos2x
=sin(2x-π/6)
(1)由0<x<π/2,得-π/6<2x-π/6<5π/6
所以-1/2<sin(2x-π/6)<=1
所以f(x)在(0,π/2)上的值域为(-1/2,1】
(2)因为f(A)=sin(2A-π/6)=1
所以2A-π/6=π/2=2kπ
A=4π/3+kπ
因为A为△ABC的内角,a<b
所以A=π/3
由余弦定理得
a^2=b^2+c^2-2bccosA
即7=9+c^2-3c
解得c=1,或2
答
1
答
1) f(x)=cos(2x-π/3)-cos2x=-2sin(2x-π/6)sin(-π/6)=sin(2x-π/6) 和差化积
x属于(0,π/2),(2x-π/6)属于(-π/6,5π/6 ) f(x)属于( -sinπ/6 sinπ/6),即 (-1/2 1/2)
2)若f(A)=1,即sin(2A-π/6)=1,2A-π/6= π/2 A= π/3
余弦定理 a^2=b^2+c^2+2bccosA c^2+3c+2=0 c=1,2