函数y=arcsin(2x-1)的定义域为______.
问题描述:
函数y=arcsin(2x-1)的定义域为______.
答
知识点:本题考查反三角函数的定义域的求法,基本知识的考查.
设t=2x-1,
∵反正弦函数y=arcsint的定义域为[-1,1],
∴解不等式-1≤2x-1≤1,可得x∈[0,1].
所以函数的定义域为:[0,1].
故答案为:[0,1].
答案解析:设t=2x-1,根据反正弦函数的定义域解关于x的不等式-1≤2x-1≤1,即可得出f(x)的定义域;
考试点:反三角函数;函数的定义域及其求法.
知识点:本题考查反三角函数的定义域的求法,基本知识的考查.