(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-3sin2x),已知tanx=2,求值
问题描述:
(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-3sin2x),已知tanx=2,求值
答
原式=[sin²x-2sinacosx-cos²x]/[4cos²x-6sinxcosx]
=[tan²x-2tanx-1]/[4-6tanx] 【分子分母同除以cos²x】
=[2²-2×2-1]/[4-6×2]
=1/8
答
(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-3sin2x)=(sin^2x-2sinx*cosx-cos^2x)/(4cos^2x-6sinxcosx)分子分母同时除以cos^2x=(sin^2x/cos^2x-2sinx*cosx/cos^2x-cos^2x/cos^2x)/(4cos^2x/cos^2x-6sinxcosx/cos^2x)=(tan^...