一道高一代数题:y=f(x)的定义域为(负无穷,-1)并(1,正无穷)且为奇函数,f(3)=1,当x>2时,f(x)>0;对于任意的x>0,y>0有:f(x+1)+f(y+1)=f(xy+1).证明:f(x)在(1,正无穷)内单调递增.

问题描述:

一道高一代数题:
y=f(x)的定义域为(负无穷,-1)并(1,正无穷)且为奇函数,f(3)=1,当x>2时,f(x)>0;对于任意的x>0,y>0有:f(x+1)+f(y+1)=f(xy+1).
证明:f(x)在(1,正无穷)内单调递增.

证明 设y>x>1,u=x-1>0,v=(y-1)/(x-1)>1,uv=y-1>0,
由f(u+1)+f(v+1)=f(uv+1)得
f(x)+f(v+1)=f(y)
f(y)- f(x)=f(v+1)
由v>1得v+1>2, f(v+1)>0,故f(y)-f(x)>0, f(y)>f(x), f(x)在(1,+∞)内单调递增.

证明:任取x1,x2∈(0,+∞)且x1>x2.
则x1+1,x2+1∈(1,+∞)
由题 f(x1+1)-f(x2+1)=f(x1/x2+1)
又x1>x2,∴x1/x2+1>2
则f(x1/x2+1)>0
∴f(x1+1)>f(x2+1)
∴f(x)在(1,+∞)内单调递增

证明:由于:f(x+1)+f(y+1)=f(xy+1)
则有:f(xy+1)-f(y+1)=f(x+1)
任取x1,x2属于(1,正无穷),且x1>x2
则f(x1)-f(x2)
=f[(x1-1)+1]-f[(x2-1)+1]
=f[(x1-1)/(x2-1) +1]
由于:x1>x2>1
则有:x1-1>x2-1>0
故:(x1-1)/(x2-1) >1
则(x1-1)/(x2-1) +1>2
又x>2时,f(x)>0
则:f[(x1-1)/(x2-1) +1] >0
即对任意x1,x2属于(1,正无穷),
当x1>x2时,恒有f(x1)>f(x2)
故f(x)在(1,正无穷)内单调递增