已知cosa-2sina=根号5 求tana的值
问题描述:
已知cosa-2sina=根号5 求tana的值
答
cosα-2sinα=√5
(cosα-2sinα)^2=5
cos^2α-4cosαsinα+4sin^2α=5
(cos^2α-4cosαsinα+4sin^2α)/(cos^2α+sin^2α)=5
左边上下同除以cos^2α
得到
(4tan^2α-4tanα+1)/(tan^2α+1)=5
4tan^2α-4tanα+1=5(tan^2α+1)
(tanα+2)^2=0
tanα=-2.