若3sinθ=cosθ,则cos2θ+sin2θ的值等于
问题描述:
若3sinθ=cosθ,则cos2θ+sin2θ的值等于
答
cos2θ+sin2θ
=(2cos²θ - 1+2sinθcosθ)/(sin²θ+cos²θ)
=(2cos²θ - sin²θ - cos²θ+2sinθcosθ)/(sin²θ+cos²θ)
=(cos²θ - sin²θ+2sinθcosθ)/(sin²θ+cos²θ)
=(1 - tan²θ+2tanθ)/(tan²θ+1)
因为3sinθ=cosθ,所以tanθ=1/3
所以(1 - tan²θ+2tanθ)/(tan²θ+1)=(1- 1/9+2/3)/(1/9+1)=7/5
所以cos2θ+sin2θ=7/5
答
3sinθ=cosθ,
tanθ=1/3
cos2θ+sin2θ
=(1-tan²θ)/(1+tan²θ) +2 tanθ/(1+tan²θ)
=(1-tan²θ+2 tanθ)/(1+tan²θ)
=(1-1/9+ 2/3)/(1+1/9)
=7/5
答
3sinθ=cosθ
所以tanθ=1/3
cos2θ+sin2θ
=(cos²θ-sin²θ+2sinθcosθ)/(sin²θ+cos²θ)
=(1-tan²θ+2tanθ)/(tan²θ+1)
=7/5