设α1,α2是非齐次线性方程组AX=B的解,β是对应的齐次方程组AX=0的解,则AX=B必有一个解是( )A、α1+α2β B、α1-α2 C、β+α1+α2 D、β+1/2α1+1/2α2
问题描述:
设α1,α2是非齐次线性方程组AX=B的解,β是对应的齐次方程组AX=0的解,则AX=B必有一个解是( )
A、α1+α2β B、α1-α2 C、β+α1+α2 D、β+1/2α1+1/2α2
答
选D因为β是对应的齐次方程组AX=0的解所以非齐次线性方程组AX=B的解可表示为α=kβ+s其中s为非齐次线性方程组AX=B的特解令α1=mβ+s,α2=nβ+s则β+1/2α1+1/2α2 =(1+(m+n)/2)β+s=kβ+s所以选D注:W={x|x=kβ}构成...