A为n阶矩阵,a是n维列向量,秩〔A b〕=秩(A),线性方程组〔A b〕〔x〕=0必有()解?b’ 0 b’ 0 y
问题描述:
A为n阶矩阵,a是n维列向量,秩〔A b〕=秩(A),线性方程组〔A b〕〔x〕=0必有()解?b’ 0 b’ 0 y
答
方程个数小于未知数个数,即n+1个n维向量,必有非0解
A为n阶矩阵,a是n维列向量,秩〔A b〕=秩(A),线性方程组〔A b〕〔x〕=0必有()解?b’ 0 b’ 0 y
方程个数小于未知数个数,即n+1个n维向量,必有非0解