已知:实数a,b满足b=根号-(a-5)²+4、c的平方根等于自己本身.求a-根号b-c
问题描述:
已知:实数a,b满足b=根号-(a-5)²+4、c的平方根等于自己本身.求a-根号b-c
答
实数a,b满足b=根号-(a-5)²+4
b=√[-(a-5)^2]+4
-(a-5)^2≥0
(a-5)^2≤0
而(a-5)^2≥0
a-5=0
a=5
b=√0+4=4
c=0 或C=1
a-根号b-c
=a-√b-c
=5-√4-0
=5-2-0
=3
或5-根号3
答
实数a,b满足b=根号-(a-5)²+4
b=√[-(a-5)^2]+4
-(a-5)^2≥0
(a-5)^2≤0
而(a-5)^2≥0
a-5=0
a=5
b=√0+4=4
c=0
a-根号b-c
=a-√b-c
=5-√4-0
=5-2-0
=3
答
实数a,b满足b=根号-(a-5)²+4
b=√[-(a-5)^2]+4
-(a-5)^2≥0
(a-5)^2≤0
而(a-5)^2≥0
a-5=0
a=5
b=√0+4=4
c的平方根等于自己本身
c=0
a-根号b-c
=a-√b-c
=5-√4-0
=5-2-0
=3
答
题目要给清楚。b=√-(a-5)²+4
b=√(-(a-5)²+4)结果就不一样。