甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.①取出的3个球恰好是2个红球和1个白球的概率是多少?②取出的3个球全是白球的概率是多少?
问题描述:
甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.
①取出的3个球恰好是2个红球和1个白球的概率是多少?
②取出的3个球全是白球的概率是多少?
答
知识点:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
(1)画树状图得:
∴一共有12种等可能的结果,
取出的3个球恰好是2个红球和1个白球的有2种情况,
∴取出的3个球恰好是2个红球和1个白球的概率是
=2 12
;1 6
(2)∵取出的3个球全是白球的有4种情况,
∴取出的3个球全是白球的概率是
=4 12
.1 3
答案解析:(1)此题需要三步完成,所以采用树状图法比较简单,然后树状图分析所有等可能的出现结果,根据概率公式即可求出该事件的概率;
(2)求得取出的3个球全是白球的所有情况,然后根据概率公式即可求出该事件的概率.
考试点:列表法与树状图法.
知识点:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.