x>y>0,xy=1,求证:(x^2+y^2)/x-y)>=2倍根号2
问题描述:
x>y>0,xy=1,求证:(x^2+y^2)/x-y)>=2倍根号2
答
这是个retanglar hyperbola
xy=1
foci:(root2,root2)
if rotate 45 degree
then x^2/root2 +y^2/root2=1
答
(x^2+y^2)/x-y)
=(x^2+y^2-2xy+2xy)/(x-y)
=(x-y)^2/(x-y)+2xy/(x-y)
=(x-y)+2xy/(x-y)
因为均值不等式a+b>=2√ab
所以上式>=2√2xy (xy=1)
即 :(x^2+y^2)/(x-y)>=2√2