比如88232除以2374 之类的速算方法.求方法.求万位以上的速算方法或者速算表.背也行
比如88232除以2374 之类的速算方法.求方法.求万位以上的速算方法或者速算表.背也行
有条件的特殊数的速算 两位数乘法速算技巧 原理:设两位数分别为10A+B,10C+D,其积为S,根据多项式展开: S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果. 注:下文中 “--”代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位, 满十前一,不足补零. A.乘法速算 一.前数相同的: 1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10+A×B 方法:百位为二,个位相乘,得数为后积,满十前一. 例:13×17 13 + 7 = 2- - ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了) 3 × 7 = 21 ----------------------- 221 即13×17= 221 1.2.十位是1,个位不互补,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B 方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一. 例:15×17 15 + 7 = 22- ( “-”在不熟练的时候作为助记符,熟练后就可以不使用了) 5 × 7 = 35 ----------------------- 255 即15×17 = 255 1.3.十位相同,个位互补,即A=C,B+D=10,S=A×(A+1)×10+A×B 方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积 例:56 × 54 (5 + 1) × 5 = 30- - 6 × 4 = 24 ---------------------- 3024 1.4.十位相同,个位不互补,即A=C,B+D≠10,S=A×(A+1)×10+A×B 方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然 例:67 × 64 (6+1)×6=42 7×4=28 7+4=11 11-10=1 4228+60=4288 ---------------------- 4288 方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积. 例:67 × 64 6 ×6 = 36- - (4 + 7)×6 = 66 - 4 × 7 = 28 ---------------------- 4288 二、后数相同的: 2.1. 个位是1,十位互补 即 B=D=1, A+C=10 S=10A×10C+101 方法:十位与十位相乘,得数为前积,加上101.. - -8 × 2 = 16- - 101 ----------------------- 1701 2.2. 个位是1,十位不互补 即 B=D=1, A+C≠10 S=10A×10C+10C+10A +1 方法:十位数乘积,加上十位数之和为前积,个位为1.. 例:71 ×91 70 × 90 = 63 - - 70 + 90 = 16 - 1 ---------------------- 6461 2.3个位是5,十位互补 即 B=D=5, A+C=10 S=10A×10C+25 方法:十位数乘积,加上十位数之和为前积,加上25. 例:35 × 75 3 × 7+ 5 = 26- - 25 ---------------------- 2625 2.4个位是5,十位不互补 即 B=D=5, A+C≠10 S=10A×10C+525 方法:两首位相乘(即求首位的平方),得数作为前积,两十位数的和与个位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积. 例: 75 ×95 7 × 9 = 63 - - (7+ 9)× 5= 80 - 25 ---------------------------- 7125 2.5. 个位相同,十位互补 即 B=D, A+C=10 S=10A×10C+B100+B2 方法:十位与十位相乘加上个位,得数为前积,加上个位平方. 例:86 × 26 8 × 2+6 = 22- - 36 ----------------------- 2236 2.6.个位相同,十位非互补 方法:十位与十位相乘加上个位,得数为前积,加上个位平方,再看看十位相加比10大几或小几,大几就加几个个位乘十,小几反之亦然 例:73×43 7×4+3=31 9 7+4=11 3109 +30=3139 ----------------------- 3139 2.7.个位相同,十位非互补速算法2 方法:头乘头,尾平方,再加上头加尾的结果乘尾再乘10 例:73×43 7×4=28 9 2809+(7+4)×3×10=2809+11×30=2809+330=3139 ----------------------- 3139 三、特殊类型的: 3.1、一因数数首尾相同,一因数十位与个位互补的两位数相乘. 方法:互补的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补. 例: 66 × 37 (3 + 1)× 6 = 24- - 6 × 7 = 42 ---------------------- 2442 3.2、一因数数首尾相同,一因数十位与个位非互补的两位数相乘. 方法:杂乱的那个数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看非互补的因数相加比10大几或小几,大几就加几个相同数的数字乘十,反之亦然 例:38×44 (3+1)×4=16 8*4=32 1632 3+8=11 11-10=1 1632+40=1672 ---------------------- 1672 3.3、一因数数首尾互补,一因数十位与个位不相同的两位数相乘. 方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补,再看看不相同的因数尾比头大几或小几,大几就加几个互补数的头乘十,反之亦然 例:46×75 (4+1)*7=35 6*5=30 5-7=-2 2*4=8 3530-80=3450 ---------------------- 3450 3.4、一因数数首比尾小一,一因数十位与个位相加等于9的两位数相乘. 方法:凑9的数首位加1乘以首数的补数,得数为前积,首比尾小一的数的尾数的补数乘以凑9的数首位加1为后积,没有十位用0补. 例:56×36 10-6=4,3+1=4,36÷9也等于4 5*(10-6)=20 4*(10-6)=16 “注:(10-6)也可以写作(3+1)和(36÷9)” --------------- 2016 3.5、两因数数首不同,尾互补的两位数相乘. 方法:确定乘数与被乘数,反之亦然.被乘数头加一与乘数头相乘,得数为前积,尾乘尾,得数为后积.再看看被乘数的头比乘数的头大几或小几,大几就加几个乘数的尾乘十,反之亦然 例:74×56 (7+1)*5=40 4*6=24 7-5=2 2*6=12 12*10=120 4024+120=4144 --------------- 4144 3.6、两因数首尾差一,尾数互补的算法 方法:不用向第五个那么麻烦了,取大的头平方减一,得数为前积,大数的尾平方的补整百数为后积 例:24×36 3>2 3*3-1=8 6^2=36 100-36=64 --------------- 864 3.7、近100的两位数算法 方法:确定乘数与被乘数,反之亦然.再用被乘数减去乘数补数,得数为前积,再把两数补数相乘,得数为后积(未满10补零,满百进一) 例:93×91 100-91=9 93-9=84 100-93=7 7*9=63 --------------- 8463 3.8、头互补,尾不同的两位数乘法 方法:先确定乘数与被乘数,前两位为将被乘数的头和乘数的头相乘加上乘数的个位数.后两位为被乘数与乘数尾数的积.再看被乘数末尾的数比乘数末尾数字小几或大几,小几就减几个乘数的头乘十,反之亦然 例:22×81 2*8+1=17 2*1=2 2=1+1 1702+1*80=1782 --------------- 1782 B、平方速算 一、求11~19 的平方 同上1.2,乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一 例:17 × 17 17 + 7 = 24- 7 × 7 = 49 --------------- 289 三、个位是5 的两位数的平方 同上1.3,十位加1 乘以十位,在得数的后面接上25. 例:35 × 35 (3 + 1)× 3 = 12-- 25 ---------------------- 1225 四、十位是5 的两位数的平方 同上2.5,个位加25,在得数的后面接上个位平方. 例: 53 ×53 25 + 3 = 28-- 3× 3 = 9 ---------------------- 2809 四、21~50 的两位数的平方 求25~50之间的两数的平方时,记住1~25的平方就简单了, 11~19参照第一条,下面四个数据要牢记: 21 × 21 = 441 22 × 22 = 484 23 × 23 = 529 24 × 24 = 576 求25~50 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0. 例:37 × 37 37 - 25 = 12-- (50 - 37)^2 = 169 -------------------------------- 1369 五、知道平方后的速算 5.1 相邻奇(偶)数的速算 方法,取平均数的平方减去1 例:21*23 22^2=484,484-1=483 -------------------------------- 483 5.2 两数相加为100的速算(限用于小数为25-49) 方法:将大数减去50,再用2500减去差的平方 例:36*64 64-50=14 2500-14^2=2500-196=2304 -------------------------------- 2304 5.3 两数相加为100的速算(限用于小数为1-25) 方法,将小数乘以100,减去小数的平方即可 例:11*89 1100-11^2=1100-121=979 -------------------------------- 979 5.4(三位乘三位)两因数第一位相同,后两位互补的乘法 方法:前两位为被乘数第一位加1和另一个被乘数第一位的积;后面四位为两个数字中每个数末尾两位的积 例:436*464 64-50=14 2500-14^2=2500-196=2304 4*5=20 -------------------------------- 202304 5.5 和为200的两数乘法 方法:将大数百位上的1直接去掉,再用10000减去去掉后数的平方 例:127*73 27^2=729 10000-729=9271 -------------------------------- 9271 5.6 两数字(三位数)后两位互补,百位数差一的乘法 方法:将大数百位上的数字直接去掉,再用大数平方减一作为前两位,后四位为10000减去去掉后数的平方 例:217*183 2^2=3 10000-17^2=10000=289=9711 -------------------------------- 39711 5.7 十位数相差2,个位数相同的乘法 方法:取平均数的平方减去100 例:25*45 (25+45)÷2=35 35^2-100=1125 -------------------------------- 1125 5.8 百位互补,后两位相同的乘法 方法:取两数的百位相乘加上并乘以10后加上后两位为前两位,后面三位为后两位的平方(位数不够用0补,满十进一) 例:323*723 3*7*10+23=233 23^2=529 -------------------------------- 233529 六:多位数特殊算法 6.1 一数和为9,一数为顺子的算法 方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数,中间的数字全部替换为上一步处理完的数. 例:45*234567 步骤1:4+1=5,10-5=5,45÷9=5(任选一个即可) 步骤2:5*2=10;5*(10-7)=15 步骤3:将中间的3456替换为全部替换为5 -------------------------------- 10555515 6.2、一数和为9,一数为含890的顺的算法 方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数.中间的数字除9以外全部替换为上一步处理完的数,9替换成0,若0为结尾则先约掉0按6.1的方法算出答案后再补0. 例:36*6789012 步骤1:3+1=4,10-6=4,36÷9=4(任选一个即可) 步骤2:4*6=24;4*(10-2)=32 步骤3:将78901替换为44044 -------------------------------- 244404432 6.3、一数和为9,一数为缺八顺的算法(末尾可以是789) 方法:凑9的数字按3.4条的方法处理,再将此数乘以顺子的头和尾的补数.中间的数字全部替换为上一步处理完的数.若0为结尾则先约掉0按6.1的方法算出答案后再补0. 例:36*567901234 步骤1:3+1=4,10-6=4,36÷9=4(任选一个即可) 步骤2:4*5=20;4*(10-4)=24 步骤3:将6790123全部替换为4 -------------------------------- 20444444424 6.4、一数互补,一数为相同数的算法 方法:头加一和尾同时与相同数的任意一位数字相乘. 中间的数字位数为相同数的位数减2,数字不变 例:46*444444444 步骤1:(4+1)*4=20,6*4=24 步骤2:444444444有9个4,9-2=7,抄7个4 -------------------------------- 20444444424 6.5、一数为相同数,一数位两位循环(相邻两位互补)的算法 方法:先将相同数的任意一位乘以循环节首位+1,再将相同数的任意一位乘以尾数,中间数字替换成相同数的任意一位数 例1:77*646464 步骤1:(6+1)*7=49,7*4=28 步骤2:将4646替换为7777 -------------------------------- 49777728 例2:44*7373737 步骤1:(7+1)*4=32,7*4=28 步骤2:将37373替换为44444 -------------------------------- 324444428 6.6、多个9乘以任意数(位数要少于或等于前数的总位数) 方法:先将(任意数)-1,然后把(任意数)的位数和(多个9)比较位数的多少,少几位则在中间写几个9,写完9后写补数.熟练者可以直接看出位数,写补数.如果两个数位数相同,中间则没有9. 例:1536*999999 第一步:1536-1=1535 第二步:6(6个9)-4(1536是4位数)=2 第三步:10000-1536=8464 答案:1535998464 C、加减法 一、补数的概念与应用 补数的概念:补数是指从10、100、1000……中减去某一数后所剩下的数. 例如10减去9等于1,因此9的补数是1,反过来,1的补数是9. 补数的应用:在速算方法中将很常用到补数.例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等. D、除法速算 一、某数除以5、25、125时 1、 被除数 ÷ 5 = 被除数 ÷ (10 ÷ 2) = 被除数 ÷ 10 × 2 = 被除数 × 2 ÷ 10 2、 被除数 ÷ 25 = 被除数 × 4 ÷100 = 被除数 × 2 × 2 ÷100 3、 被除数 ÷ 125 = 被除数 × 8 ÷1000 = 被除数 × 2 × 2 × 2 ÷1000 在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案.因本人水平所限,上面的算法不一定是最好的心算法